Brain aging and memory loss due to Dementia and Alzheimer's disease with the medical icon of a group of color changing autumn fall trees in the shape of a human head losing leaves as a loss of thoughts and intelligence function.

Can Alzheimer’s disease be treated with ketones?

Brain aging and memory loss due to Dementia and Alzheimer's disease with the medical icon of a group of color changing autumn fall trees in the shape of a human head losing leaves as a loss of thoughts and intelligence function.

The brain’s main fuel source is glucose. However, it has been shown that the brains of people who have Alzheimer dementia (AD) are not able to utilize glucose as well as normal people. When there is not enough glucose to meet it’s metabolic needs, the neurons that work the hardest, i.e. those involved with memory and cognition are the first ones to be compromised and thus show impairment. So the question is: is there another fuel that the brain can use?

The answer luckily is yes! Ketone bodies (KB) or ketones are another fuel source for the brain and the body. Acetoacetate and Beta-hydroxybutrate are collectively known as ketone bodies (KB). KB are normal metabolites that are manufactured by the liver as an alternative fuel for the body and the brain when dietary sources of carbohydrates are in short supply, a process called ketosis. Ketone bodies can be produced in healthy individuals either during times of fasting or by eating a ketogenic diet. The ketogenic diet was first introduced, over 80 years ago, as a dietary treatment of uncontrolled epilepsy in children. The ketogenic diet is diet consisting of high amounts of fat and low amounts of carbohydrates. Other ways of producing ketones nutritionally are by eating high amounts of medium chain triglycerides (MCTG) such as coconut oil repetitively throughout the day.

When ketones are available they are a better fuel source for the brain in patients with AD for several reasons. First of all ketones do not need insulin for uptake into the cell, so it is easier for the brain to get this fuel source compared to glucose. This decrease usage of glucose is visible on brain PET scans, which look at the uptake of glucose. In patients with early AD, there is a 14% overall decrease in the uptake of glucose compared to normal controls. In contrast, when these same patient are placed in brain PET scans looking at the uptake of ketones, the uptake is the same both in the patients with early AD and normal controls.

Other possible theories on way ketones are a better source of fuel for patients with AD is that they are a more efficient source of energy. First of all ketones produce more energy (ATP) compared to glucose. Secondly, the mitochondria, the cells that produce the body’s energy, are believed to be impaired in patients with AD. Ketones, however, are able to bypass the blocked site of the energy pathway, the Krebs cycle, in the mitochondria. This allows the mitochondria to produce energy more efficiently when it is fueled with ketones.

There have been several published clinical studies looking at the effects of ketosis in patients with mild cognitive impairment and AD. The results have shown improved cognitive performance in patients who are in ketosis either from eating a ketogenic diet or from a diet consisting of very high dose of MCTG oils (20- 70 g/day). This improvement in memory was positively correlated the urinary ketone levels, i.e. the higher the level of ketones in the body, the better the cognitive effect.

Even more exciting than the fact that the ketogenic diet has been shown to help memory in people with AD, is that there is also evidence that being in ketosis might also have some disease modifying benefits in AD. In mouse models of AD, a ketogenic diet has been shown to actually improve the pathology associated with AD. Specifically, the mouse brains were found to have less beta- amyloid formation and less phospholated tau protein formation, the neuropathology associated with AD. Ketones have also been shown to have a neuro-protective effect on the hippocampal neurons from both glutamate and amyloid beta toxicity. The hippocampi in rats that are fed a ketogenic diet have also have an increase amount of mitochondria. The neuro-protective effect thus may result from enhanced energy reserves, which improves the ability of the neurons to resist metabolic challenges. Another possibility is that ketone metabolism as compared to glucose metabolism generates less free radicals and lower oxidative stress, thus resulting in improved antioxidant capacity, decrease CNS inflammation, and thus less cell death.

There are potentially 2 problems associated with the ketogenic diet. 1) It is very difficult to adhere to, especially in people who have dementia, who are not self motivated to stick with the diet. 2) Eating a high carbohydrate meal while on the ketogenic diet would potentially throw the person out of therapeutic ketosis and it   may take a day or two to get back in, thus taking several days before seeing any benefits again. Up until now the only other alternative to the ketogenic diet to produce therapeutic ketosis is the repetitive ingestion of high does of MCTG. The problem with it is: the doses high enough to produce therapeutic ketosis are often associated with significant GI side effects. Additionally, taste of MCTG is often difficult to swallow.

Luckily now there is a better way. There is a now a ketone supplement available to the public. This supplement, which is a proprietary blend of ketone mineral salts, puts your body into a state of therapeutic ketosis within 60 minutes of drinking it without having to be on a strict ketogenic diet.

Now, this ketone supplement is not an approved treatment by the FDA for treatment of AD or any other disease for that matter. However, I am so convinced, based on what the research suggests on what the Alzheimer’s brain needs to function at its optimal level. Along with what the potential benefits of being in the state of ketosis offers, including how it could work for the Alzheimer’s brain that I personally drink it myself and have also recommended it to my parents. Since there is no known cure for AD or proven treatment yet available, if something as simple as drinking this supplement twice a day would help with your memory would you give it a try?

Bibliography

Cunnane, S. C. (2016). Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Annals of the New York Academy of Sciences, 1367, 12-20.

Cunnane, S. e. (2011). Brain fuel metabolism, aging and Alzheimer’s disease. Nutrition (27), 3-20.

Gano, L. B. (2014). Ketogenic diets, mitochondria, and neurological diseases. Journal of Lipid Research, 55, 2211-2228.

Gasior, M. e. (2006). Neuroprotective and disease modifying effects of the ketogenic diet. Behavoral Pharmacology (17), 431-439.

Hashim, S. W. (2014). Ketone body therapy: from the ketogenic diet to the oral administartion of ketone ester. Journal of Lipid Research, 55, 1818-1826.

Krikorian, R. E. (2012). Dietary ketosis enhances memory in mild cognitive impairment. Neurobiology of Aging, 425 (e19).

Newport, M. T. (2015). A new way to produce hyperketonemia: Use of ketone ester in a case of Alzheimer’s disease. Alzheimer’s & Dementia, 11, 99-103.

 

The medical information on this site is provided as an information resource only. This information does not create any patient-physician relationship, and should not be used as a substitute for professional diagnosis and treatment.
fuel pump

Benefits of fueling your body with ketones

Why Ketones are a better fuel source than glucose

Where do our bodies get the energy to fuel our activities of daily living? 

Glucose is the main fuel source of our bodies, but there is another type of fuel that is available to our bodies, ketones.  Ketones are a natural by-product of fat metabolism.  When the body has run out of glucose to use as fuel it will switch fuel sources and start converting fat into fatty acids and then into ketones.  Our bodies were designed to use this duel source of energy based on how we lived in the caveman days.  In the summer and spring when food was plentiful, cavemen would eat more food and pack on the extra and store it as fat.  Then in the fall and winter when food was scarce, the cavemen would live off that extra stored fat.   Nowadays, since food supply is plentiful all year around and there is no physiological need or demand to live off the stored fat, thus we may just keep packing it on, all year around.

What are the differences between ketones and glucose as a source of energy?

Research suggests that ketones are a better, cleaner source of energy for the body and actually provide more energy than glucose.  Unlike glucose, ketones do not depend on insulin to get into the cells for use. Ketones produce less carbon dioxide and free radicals than when the body uses glucose as a fuel source thus are less toxic for our body, making it a cleaner fuel source. Unfortunately, ketones are harder energy source for our bodies to tap into since they require your body to be in either a starvation mode or at least be in a state of very low in carbohydrates.  Nowadays, the most common way of getting the body to produce ketones, or be in a state of ketosis, is by being on a very low carb diet i.e. a ketogenic diet.  Typically, a ketogenic diet consists of 5-10% carbohydrates, 20-25% protein and 65-75% fats.  As you can imagine this is not easy to achieve.

For those who do achieve ketosis, the benefits to the body and the brain are impressive.  Here are just a few of the benefits that are suggested by the research:

1) Better Brain Function

As a Neurologist this is the benefit of ketosis I have to list first.  If ketones are available, then they are the preferred fuel for the brain over glucose.  Subjectively, this means improved focus and mental cognition.  Objectively, it has been shown to improve memory in patients with Alzheimer’s dementia.  A ketogenic diet has been used for over 80 years in the treatment of difficult to control seizures.  It is also being studied in: Parkinson’s disease, ALS, traumatic brain injury, and hypoxic brain injury.  Ketosis has also been shown to be beneficial in patients with migraine headaches, ADD, PTSD and depression.

2) Better Athletic Performance

Forget carb loading, for better athletic performance.  Ketones are a better energy source for your workouts.  Ketones provides  more ATP (adenosine triphosphate) than glucose.  Subjectively, many people who achieve ketosis report feeling of increased energy levels.  Having more ATP means more energy to workout longer and harder. Objectively, several studies on endurance athletes have shown that athletes who are in ketosis are able to perform at a higher level for a longer period of time.

3) Fat Loss

When your body is in ketosis it is now literally a ‘fat burning machine’.  Without having carbohydrates/glucose around for energy, your body starts releasing stored fat, which then will be turned into ketones for energy. Thus, inches drop off faster than with a low-fat high carb diet because you are actively burning up your stored fat.  Additionally, high fat diet have a protein (muscle) sparing effect so if you are calorie restricted, your body will be protected against breakdown of skeletal muscle as a source of fuel.

4) Improved Diabetes

Diabetes is either due to a decreased insulin production (type 1 diabetes) or insulin resistance (type 2 diabetes). Insulin is required to transport glucose into the cells for use.   In type 1 diabetes, there is not enough insulin around for the amount of glucose in the body. In type 2 diabetes, the cells are ‘resistant’ to the insulin that is around, and the cells are not able to process the glucose. Since all carbohydrates we eat break down into glucose, treatment of diabetes is often focused around lowering the glucose level, thus eating a low carb diet is recommended. Studies in individuals with type 2 diabetes using either, a very low carbohydrate or a ketogenic diet have had impressive results. These studies have showed that the participants were able to decrease or completely withdrawal off of the use of insulin, along with having major weight loss in a matter of just a few weeks. Also, it has been reported that eating a high fat, ketogenic diet can also improve insulin sensitivity, meaning the insulin that is around works better.

5) Less Inflammation

One of the ketones produced by the body is beta-hydroxybutyrate, has been shown to have an anti-inflammatory effect. Reports show individuals eating a ketogenic diet have some symptomatic improvement from rheumatoid arthritis, polycystic ovary disease, migraine headaches, eczema, and other conditions caused by inflammatory processes.

If ketosis is so good for you then why isn’t everyone doing it?

Well, first of all, most mainstream nutritionists and the USDA still recommend carbohydrates as a main staple of our diet.  Second, we live in a world that is addicted to carbohydrates.  Thus, most people simply cannot adhere to the strict diet that is required to get into and stay in ketosis through nutritional adjustments of eating so few carbohydrates.

So what if there was a supplement of exogenous ketones that could put you in therapeutic ketosis within an hour, despite your diet, and allow you to potentially to tap into the above-mentioned benefits without having to be on a strict ketogenic diet?  Sounds too good to be true, doesn’t it?   Luckily, such a supplement was developed under US Department of Defense commissioned research for use in Navy Seal divers to prevent seizures that could occur in association with using high-oxygen re-breathers (oxygen toxicity).   A ketone supplement that was inspired based on that research and has been released for sale to the public.  If you would like more information about this new ketone supplement check it out.

If you would like some help starting a ketogenic diet I would be happy to help.

Your Name: *

Email Address: *

How may I help?

Please leave this field empty.

 

Bibliography

Di Lorenzo, C. e. (2015). Migraine improvement during short lasting ketogenesis: a proof-of concept study. European Journal of Neurology (22), 170–177.
D’Agostino, D. P. (2013). Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 304, R829–R836.
Paoli, A. E. (2013). Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. European Journal of Clinical Nutrition (67), 789-796.
Stafstrom, C. R. (2012). The Ketogenic diet as a treatment paradigm for diverse neurological disorders. Frontiers in Pharmacology, 3, 1-8.
Youm, Y. (2015). Ketone body β-hydroxybutyrate blocks the NLRP3 inflammasome-mediated inflammatory disease. Nature Medicine, 21 (3), 263–269.
These statements have not been evaluated by the Food and Drug Administration. These products are not intended to are not intended to diagnose prevent treat or cure any disease.
The medical information on this site is provided as an information resource only. This information does not create any patient-physician relationship, and should not be used as a substitute for professional diagnosis and treatment.